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Ascertainment Corrections Based on Smaller Family Units
George Ebow Bonney
Department of Biostatistics, Fox Chase Cancer Center, Philadelphia

Summary

Ascertainment concerns the manner by which families
are selected for genetic analysis and how to correct for
it in likelihood models. Because such families are often
neither drawn at random nor selected according to well-
defined rules, the problem of ascertainment correction
in the genetic analysis of family data has proved durable.
This paper undertakes a systematic study of ascertain-
ment corrections in terms of smaller distinct units, which
will usually be sibships, nuclear families, or small ped-
igrees. Three principal results are presented. The first is
that ascertainment corrections in likelihood models for
family data can be made in terms of smaller units, with-
out breaking up the pedigree. The second is that the
appropriate correction for single ascertainment in a unit
is the reciprocal of the sum of the marginal probabilities
of all the persons relevant to its ascertainment, as if
affected. The third result is a generalization of the single
ascertainment-correction formula to k-plex ascertain-
ment, in which each unit has k or more affecteds. The
correction is the reciprocal of the sum of the joint prob-
abilities of all distinct sets of k persons in the unit, as if
they were all affected. In extended families, two addi-
tional ascertainment schemes will be considered and ex-
plicit formulas will be presented. One of these schemes
is “uniform-proband-status ascertainment,” in which
nonmembers of a given unit have the same chance as
members to become probands if they are affected; the
other scheme is the “inverse law of ascertainment,” in
which the chance that nonmembers of a unit will become
probands for that unit decreases with degree of rela-
tionship. Several specific recommendations are made for
further study.
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Introduction

Statistical inference presumes that the sample and the
population are characterized by the same types of units,
which we call “sampling units,” and, further, that the
units appearing in the sample can be appropriately
weighted if they were nonrandomly selected from the
population. Without the first, the concepts of likelihood,
bias, standard error, and hypothesis-testing criteria such
as x2 are all meaningless. Without the second, the results
are often biased. In families, structure and size are often
arbitrary, and so it is not obvious what the sampling
units are in genetic studies utilizing families. The early
workers (e.g., see Weinberg 1912; Fisher 1934; Haldane
1938; Bailey 1951; Morton 1959) concerned with seg-
regation at a single locus developed methods for the
analysis of independent nuclear families ascertained
through probands, by conditioning on each family con-
taining at least one proband. The sampling unit was
clearly the sibship, if the selection was through an af-
fected child, or the nuclear family, if selection was
through an affected parent. Inference pertains to either
a population of sibships each with at least one affected
person or a population of nuclear families each with at
least one affected person. Moreover, the p model first
introduced by Fisher (1934) allowed each unit in the
sample to be weighted by its selection probability, the
ascertainment correction. The later workers (e.g., see
Morton et al. 1971; Elston and Yelverton 1975; Stene
1977, 1978) followed this paradigm.

For extended families, or pedigrees, the picture is not
so clear. Elston and Sobel (1979) proposed conditioning
on the pedigree containing at least one proband (among
persons who could be probands regardless of their phe-
notypes). This, in effect, suggests that the classic method
can be extended to pedigrees, without regard to their
sizes or structure, although it is not known what the
actual sampling unit may be.

On the other hand, Lalouel and Morton (1981) pro-
posed treating the sibships within pedigrees as the sam-
pling units, in keeping with the classic approach. They
recognized, however, that some sibships in pedigrees
may not contain probands; they therefore based the as-
certainment correction for such nuclear families on
pointers: relatives (of extreme phenotypes) outside the
nuclear family who may have caused the selection of
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those nuclear families. In their likelihood formulation,
each pedigree was broken into nuclear families, and the
latter were handled as if they were independently se-
lected from the population.

In a marked departure from the techniques reviewed
so far, Cannings and Thompson (1977) showed that,
under certain sequential sampling schemes, one needs to
condition on the initial ascertainment event only and
that it is not necessary to break up the pedigree. They
noted that independently sampled pedigrees that join up
remain problematic. Because of its simplicity, their
method of ascertainment correction has been adapted
even for families not selected according to their sequen-
tial scheme. Although the method was not presented in
those terms, well-defined sampling units can be decided
on and drawn sequentially, as they suggested.

Ewens and Shute (1986) and Shute and Ewens (1988)
have suggested, without consideration of structure, that
conditioning on parts of the data relevant to ascertain-
ment can lead to results robust to certain ascertainment
models. There is some loss in efficiency in certain im-
portant cases. Thompson (1988) showed that their pro-
cedure can be more appropriately viewed as an example
of Cox’s (1972, 1975) partial likelihood. Risch (1984)
had proposed conditioning on affected persons when
simultaneously estimating recombination fractions be-
tween marker/disease loci and parameters at the disease
locus. However, there appears to be no systematic
method for deciding on the data relevant for ascertain-
ment. For example, should one condition on only the
actual probands, or should one include the pointers of
Lalouel and Morton as well?

The methods of ascertainment corrections, especially
in pedigrees, have often generated controversy. Vieland
and Hodge (1995) have recently claimed that the prob-
lem is intractable largely because of difficulties in spec-
ification of the probability distribution for the structure
of a pedigree. In view of the problems that they have
described, Vieland and Hodges advised that future re-
search efforts should focus on the development of robust
approximate approaches. Robustness in ascertainment
corrections is taken to mean that Fisher’s (1934) p model
is not used but that, instead, conditioning on data rel-
evant for ascertainment are used (Risch 1984; Ewens
and Shute 1986; Shute and Ewens 1988). Elston (1995),
in his invited editorial on the work of Vieland and
Hodge, argued that the problem is not pedigree structure
per se but, rather, the fact that independently sampled
branches can join up, as Cannings and Thompson
(1977) already had noted in the context of sequential
sampling for which there is as yet no solution.

Another unsettling point that does not appear to have
been made in the discussion of ascertainment corrections
is the irony that the criticisms and the proposed robust
methods are both based on the work of Fisher (1934),

who considered only the simple genetic model of com-
plete penetrance with a known mating type, so that only
the segregation ratio is the unknown genetic parameter
needing to be statistically inferred. Most modern ap-
proaches for segregation analysis (e.g., see Elston and
Stewart 1971; Morton and MacLean 1974; Lalouel et
al. 1983; Bonney 1986) and linkage analysis requiring
ascertainment correction (Bonney et al. 1988) utilize
models that are far more complex than that used by
Fisher. It is not known for certain that the so-called
robust methods apply to the more complex models and
pedigree structures.

There is clearly a need to go back to basics and to
derive ascertainment-correction methods that satisfy the
basic paradigms of statistical inference from sample to
a defined population and that can be seen as broadly
applicable. This paper begins a systematic study of the
problem of ascertainment corrections, thinking in terms
of smaller units that make up the population and the
sample, without breaking up pedigrees, and using ele-
mentary probability principles, so that the basis of the
results will be clear. I show that, by thinking in terms
of such units, appropriate ascertainment corrections can
also be found. Moreover, by a proper generalization of
Fisher’s work for the defined units, more generally ap-
plicable robust ascertainment corrections can be found.
The organization of the rest of the paper is as follows.
First an expository review of Fisher’s formulation and
extensions is presented in the section on small unrelated
pedigrees. This section includes some new results on sin-
gle and k-plex ascertainment corrections, which are ro-
bust. This section is followed by a discussion of the
second major development: the decomposition of ascer-
tainments, which permits the extension of our results to
pedigrees of arbitrary structure.

Small Independent Nuclear Families

The Classic Fisher p Model

The classic approach to correcting for ascertainment
assumed independent nuclear families selected through
either affected children or parents. Let Yjs denote
the phenotype of the sth person in the jth family; let

; and let denote thes � 1,2,) ,n F � (Y ,Y , ) ,Y )j j j1 j2 jnj

phenotypes of persons in the jth family. Define the
ascertainment event for family j as A �j

. A pro-{family unit j contains at least one proband}
band is an affected person through whom the family
came to attention; if there are two or more probands,
the classic assumption is that the family came to atten-
tion independently through each of them. The ascer-
tainment correction for the jth family, when it is assumed
that the A’s are independent, is
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F FPr (A F)j j
C �j Pr (A )j

F FPr (A F)j j
� . (1)�Pr (F) Pr (A d F)i i i

Fi i

The essential features of the p�model approach in-
troduced by Fisher (1934) will be depicted with the sim-
plest case in which the phenotype (with the subscript j
dropped, for convenience) is for affected andY � 1

for unaffected, sampling is through an affectedY � 0
child, and p, the probability that an affected person be-
comes a proband, is known; that is

p, if Y � 1
p(Y) � .{0, if Y � 0

Now suppose that the sibship size is n and that
, the number of affected. Then ascertainment� Y � aj

correction (1) reduces to

a1 � (1 � p)
C � , (2)j n1 � (1 � vp)

where v is the segregation parameter. In this scheme,
is one of the cases of special interest, for then anp � 1

affected person will certainly become a proband. This
case is therefore often called “complete” ascertainment
(Morton [1959] called this case “truncate”); isp � 1
used when it can be justified that complete ascertainment
is likely to have been achieved. But note that the resulting
ascertainment correction is the same as the correction
for the probability of a affecteds in a randomly selected
sibship of size n from a large population of sibships of
size n of the same parental mating type and having at
least one affected member. Observe that

Pr(a affecteds in a sibship of size n d

complete ascertainment)

1 n a n�a� v (1 � v) ,( )n a1 � (1 � v)

which is the same as the probability of obtaining a af-
fecteds from randomly selecting from sibships of size n,
each with at least one affected. Therefore, it can be sup-
posed that, when , it is not the case that all af-p � 1
fecteds in the population necessarily became probands
but, rather, that the sample of families was randomly
selected from the truncated population of families. Thus,
when , the ascertainment-correction factor adjustsp ( 1
for the different probabilities of selection. The p model
is therefore an approach to characterize the sampled
population and to simultaneously provide a correction

for nonrandom selection from the “sampled popula-
tion.” How well the p model will do this, can, of course,
be debated in any given situation.

When p is small, Taylor-series expansions of both nu-
merator and denominator yield, to the first order,

a 1
C � ∝ , (3)j nv v

which is called “single ascertainment,” because the prob-
ability of more than one proband per family is negligible.
Sampling is proportional to the number of affecteds. I
shall discuss some generalizations of Fisher’s approach
in the following sections.

Generalized Multiple Ascertainment

More generally, let pj(Yjs) be the probability that the
sth person in unit j with phenotype Yjs is a proband for
that unit. Then the ascertainment correction for the jth
family, if the ascertainment events are assumed to be
independent, is

F FPr (A F)j j
C �j Pr (A )j

nj

1 � � [1 � p (Y )]j js
s�1� . (4)

nj

1 ��Pr (F) � [1 � p (Y )]j j js{ }F s�1j

The summations are replaced by integrals if the Y’s are
continuous. This particular formula was used by Elston
and Yelverton (1975) to discuss ascertainment correction
for a nuclear family. An alternative generalization of
formula (2), which uses the segregation parameter, v, for
a given parental mating type can be developed as fol-
lows. Let the parental mating type be YF,YM, where the
subscripts “F” and “M” denote “father” and “mother,”
respectively; then we can generalize the segregation pa-
rameter to be . Hence, if we conditionPr (Y � 1 d Y ,Y )js F M

the analysis on mating type, then the ascertainment cor-
rection for unit j becomes

Pr (A d F)j jC (Y ,Y ) �j F M Pr (A )j
nj

1 � � [1 � p (Y )]j js
s�1� . (5)

nj

1 � � [1 ��Pr (Y d Y ,Y )p (Y )]js F M j js{ }s�1 Fj

It is easily verified that, if andp (Y � 1) � p p (Y (j js j js

and , then formula (5) sim-1) � 0 v � Pr (Y � 1 d Y ,Y )js F M
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plifies to formula (2). For an analysis unconditional on
parental mating type, we have

Pr (A d F)j jC �j Pr (A )j

nj

� 1 �� [1 � p (Y )]j js{ }Zs�1

1 � Pr (Y ,Y )�� F M(
Y YF M

nj

#� 1 � Pr (Y d Y ,Y )p (Y ) . (6)[ � ]js F M j js{ })
s�1 Yjs

It is a straightforward matter to write Pr(YF,YM) and
Pr(YjsdYF,YM) in terms of parameters of interest, given a
model for the joint distribution of phenotypes. Other
weights can be explored, but I shall not pursue them
here.

Generalized Single and Multiplex Ascertainments

We now derive some new results. Suppose that the p’s
are small; then, by taking first-order Taylor-series ap-
proximations in ascertainment correction (4), with re-
spect to the p’s in the numerator and denominator sep-
arately, and retaining the first-order terms, we obtain

C � 1 � 1 � p (Y ) � p (Y )p (Y ) � ...′� ��j j js j js j js{ [ ]}Z′s s s

1 � Pr (Y )p (Y )�� js j js{ [
s Yjs

� Pr (Y ,Y )p (Y )p (Y ) � ...′ ′���� js js j js j js ]}′ ′s s Y Yjs js

� p (Y ) Pr (Y )p (Y ) .[� ] [�� ]j js js j jsZ
s s Yjs

(7)

We are now ready for our first major result.
PROPOSITION I. If if , and if it is 0p (Y ) � p Y � 1j js js

if , then the correction for single ascertainmentY � 0js

of unit j is

nj� Yjs
s�1C � . (8)nj j� Pr (Y � 1)js

s�1

Proof. The result follows directly from ascertainment
correction (7).

This proposition implies that sampling is proportional
to the number of affecteds (SsYjs), as in the classic single-
ascertainment case. However, we do not divide by the
probability of just the particular proband being affected,
as the current practice is, but by the sum of the marginal
probabilities for all the nj persons who could be pro-
bands if they were affected. A search of the literature
shows that ascertainment correction (8) is more in keep-
ing with the generalization of Fisher’s (1934) work to
weighted distributions in general (Rao 1965; Patil and
Rao 1978). If we condition on parental phenotypes, we
have

nj� Yjs
s�1C (Y ,Y ) � ;nj F M j� Pr (Y � 1 d Y ,Y )js F M

s�1

so, if there are no individual differences, such as covari-
ate effects, in the probabilities of being affected, the for-
mula reduces to that of Fisher—that is, ascertainment
correction (3).

When p is not small, the multiple-ascertainment for-
mulas (4)–(6) can be used, but then p must be specified.
An alternative is to generalize proposition I to multiplex
ascertainment in which the selected units contain more
than one proband. In particular, for the duplex ascer-
tainment in which there are two or more probands per
unit but the probability of a pair of affected persons
becoming probands for the unit is small, I propose, by
analogy with the formula (8),

nj� � Y Y ′js js′1s�1 s sC � . (9)nj j� � Pr (Y � 1,Y � 1)′js js′1s�1 s s

The numerator does not depend on parameters of in-
terest. The denominator is the sum of the marginal prob-
abilities of all relevant distinct pairs on the unit being
affected. If an affected sib pair is the duplex proband,
so to speak, then the subscripts s and s′ refer only to full
sibs within the nuclear family. If an affected parent-off-
spring pair is considered as the duplex proband, then
the relevant pairs are the distinct parent-offspring pairs,
so that

C � constant/ [Pr (Y � 1,Y � 1)�j jF js{
s(F,M

� Pr (Y � 1,Y � 1)] . (10)jM js }
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The generalization to a k-plex ascertainment, where
isnj1 X k ! S Ys�1 js

constant
C � , (11)j )� � � Pr (Y � 1, ) ,Y � 1)js js1 k�1

1 1s s s s s1 2 1 k�1 k�2

in which the denominator is the sum of the probabilities
of the relevant distinct sets of k persons as if affected.
In practice, the case of will be extremely rare.k 1 3

A Note on Applications

In my development I have so far deliberately avoided
the use of a particular genetic model, so that the results
will be as broadly applicable as possible. It is a very
simple matter to now write the phenotypic probabilities
in terms of specific genetic quantities, if any. Consider,
as an example, genetic analysis of a binary disease phe-
notype, under the assumption that there is a single locus
with two alleles, u and v, in Hardy-Weinberg equilib-
rium. Let the population frequencies be q for u and

for v; then the frequencies of the three geno-1 � q
types—uu, uv, and vv—are ,2Pr (g � uu) � q Pr (g �

, and , respec-2uv) � 2q(1 � q) Pr (g � vv) � (1 � q)
tively. For parent-offspring (or offspring-parent) pairs,
the joint genotypic probabilities are

3Pr (uu,uu) � q ;
2Pr (uu,uv) � q (1 � q) � Pr (uv,uu) ;

Pr (uv,uv) � q(1 � q) ;
2Pr (uv,vv) � q(1 � q) � Pr (vv,uv) ;

3Pr (vv,vv) � (1 � q) .

For full-sib pairs, the joint genotypic probabilities are

1 2 2Pr (uu,uu) � q (1 � q) ;
4

1 2 2Pr (uu,uv) � q (1 � q ) � Pr (uv,uu) ;
2

1 2 2Pr (uu,vv) � q (1 � q) � Pr (vv,uu) ;
4

Pr (uv,uv) � q(1 � q){1 � q(1 � q)} ;

1 2Pr (uv,vv) � q(1 � q) (2 � q) � Pr (vv,uv) ;
2

1 2 2Pr (vv,vv) � (1 � q) (2 � q) .
4

These and other joint genotypic probabilities among
family members are calculated by standard formulas (for
an excellent summary, see Elandt-Johnson 1971, chap.

7). Then, for single-ascertainment correction, formula
(8) is computed as

�Yjs
sC �j �Pr (Y � 1)js

s

�Yjs
s� ,��Pr (g ) Pr (Y � 1 d g )js js js

s gjs

where ’s are the penetrance functions, andPr (Y � 1 d g)
the Pr(g)’s are given above. Similarly, for a duplex as-
certainment, ascertainment correction (13) can be cal-
culated by

constant
C �j � � Pr (Y � 1,Y � 1)′js js′1s s s

constant
� ,� � Pr (g ,g ) Pr (Y � 1,Y � 1 d g ,g )′ ′ ′js js js js js js′1s s s

where the relevant values for Pr(gjs,gjs
′) are read from the

joint genotypic probabilities given above. Note that

Pr (Y � 1,Y � 1 d g ,g )′ ′js js js js

� Pr (Y � 1 d g ) Pr (Y � 1 d g )′ ′js js js js

if the postulated loci and the observed covariates com-
pletely explain the phenotypic dependence among family
members. Otherwise, the appropriate form must be used.
No new parameters are required by the formulation, in
the specification and calculation of the ascertainment
corrections.

Ascertainment Correction in Pedigrees

General Decomposition

The second basic idea of this paper is that units within
a pedigree can be separately corrected for ascertainment
without breaking it up. To develop the idea formally and
to obtain explicit formulas, we start with four basic
postulates.
POSTULATE I: A pedigree, however complex, can be re-
garded as comprising distinct full sibships joined by the
common biologic parents.

If sibships are distinct, then, of course, the nuclear
families are also distinct, although some of the nuclear
families may partially overlap. Hence we can regard ped-
igrees as a sample of sibships or nuclear families drawn
from a population of sibships or nuclear families.
Whether purposely or not, if, after the sample is drawn,
we end up with pedigrees in which every nuclear family,
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Figure 1 , andF � {F ,F } A � {A ,A }1 2 1 2

for example, has one or more affected persons, then we
can characterize the sampled population by that fact.
Statistical inference pertains to that sampled population.
POSTULATE II: The overall ascertainment correction for
a pedigree can be derived from the ascertainment cor-
rections of its constituent units.

The units in a pedigree are typically not selected at
random from the population, and so the likelihood for
a whole pedigree should be weighted by the selection
probabilities (separate ascertainment corrections) of the
units that it contains. Without loss of generality, consider
the family shown in the pedigree in figure 1. Let F denote
the set of phenotypes and let A denote the ascertainment
event. The term “ascertainment event” is used in this
article (rather broadly) to denote the event (or variables)
that describes the essence of the sampling of the family.
In a nuclear family, it denotes the event “at least one
proband,” a proband being a person with the condition
under study who, independently of other members of
the family, caused it to come to the attention of the
researchers so that the family was drawn into the study.
In pedigrees, there will typically be more than one pro-
band, and there could also be other persons in the ped-
igree who caused certain branches to be drawn into the
pedigree. Lalouel and Morton (1981) called these per-
sons “pointers.” Clearly, probands and pointers together
make up event A. The precise definition of A for a ped-
igree is usually unavailable. However, the probands and
pointers occur in certain units, and so how those units
are separately ascertained will define the overall A. The
likelihood function for the data is constructed by spec-
ification of a mathematical formula for the conditional
probability of the set of phenotypes F, given the ascer-
tainment event A. Suppose, to begin with, that a nuclear
family is the unit chosen, at least for the purpose of
analysis. The sets F1 and F2 are the phenotypes measured
in nuclear families 1 and 2, respectively; that is, F �

. Note that, although F1 and F2 overlap, they do(F F )1, 2

not completely overlap and are therefore distinct subsets
of F. Throughout this article, only distinct subsets of F
are implied in the terms “sampling unit,” “smaller family
unit,” and “unit.” These terms are used here inter-
changeably. If two units completely overlap, then they
are actually the same unit multiply ascertained, and so
only one ascertainment correction is needed. I shall let
Yjs denote the phenotype of the sth person in
the jth observational unit, , lets � 1,2,) ,n F �j j

denote the phenotypes of persons in the(Y ,Y , ) ,Y )j1 j2 jnj

jth unit, and denote the joint probability of the phe-
notypes of all pedigree members (under the assumption
that the pedigree was randomly selected from the pop-
ulation) as ( . This is the joint distri-Pr(F) � Pr (F ,F )1 2

bution of the phenotypes, uncorrected for ascertainment.
I stress that, by this convention, I am simply recognizing
the fact that F1 and F2 are two different random vector

variables. If the units 1 and 2, on which they are mea-
sured, completely overlap, then F1 and F2 are identical
random variables, and so .Pr (F ,F ) { Pr (F ) { Pr (F )1 2 1 2

I shall associate with unit i its own ascertainment event
Ai, so that the ascertainment of the entire pedigree can
be broken into the ascertainments of the units—that is,

. In my development of these terms, I seekA � (A ,A )1 2

to meaningfully express Pr(FFA), the joint distribution
of the phenotypes, given its overall ascertainment A, in
terms of the uncorrected joint probability, Pr(F), and
ascertainment corrections for the units that comprise F.
To proceed further, I need to formalize the description
of the basic features of ascertainment procedures. So, in
addition to postulates I and II above, I note the
following.
POSTULATE III: Ascertainment events of different units
within a pedigree are dependent, but only through the
phenotypes actually measured in the units.

The decision to include a particular unit in the pedi-
gree depends wholly or partly on its own phenotypes
and the phenotypes of other units. Thus, the ascertain-
ment event A1 does not by itself provide any more in-
formation about the ascertainment event A2 than that
provided by the actual phenotypes in unit 1, and vice
versa. In formal probabilistic language, we say that,
given the phenotypes, the actual ascertainment events of
different units are conditionally independent. A precise
probability formulation of this statement is the follow-
ing:

Pr (A d F ,F ,A ) � Pr (A d F ,F ) ;2 1 2 1 2 1 2

Pr (A d F ,F ,A ) � Pr (A d F ,F ) . (12)1 1 2 2 1 1 2

POSTULATE IV: Independently selected units can join to
form a bigger pedigree.

In this case the ascertainment events are independent.
Thus Ai depends only on Fi—that is,
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Pr (A d F ,F ,A ) � Pr (A d F ) ;2 1 2 1 2 2

Pr (A d F ,F ,A ) � Pr (A d F ) . (13)1 1 2 2 1 1

Note that, if Ai depends on only Fi, then equation (12)
reduces to equation (13).

If the pedigree was not formed by independently se-
lected units joining up, then we shall say that the chosen
units are dependent, or, more loosely speaking, corre-
lated. It seems convenient to introduce a measure of the
correlation in the ascertainment events (CAE), which I
shall define as

Pr (A ,A )1 2
k � log . (14)e { }Pr (A ) Pr (A )1 2

It is the logarithm of the ratio of the joint probability
of the ascertainments to the product of the marginal
probabilities. CAE takes the value zero if the ascertain-
ments are independent; i is positive if the probability of
joint selection of A1 and A2 exceeds the probability that
they are independently selected; it is negative if the prob-
ability of joint selection of them is less than the prob-
ability that they are independently selected. Our basic
result can be stated as follows.

PROPOSITION II. Every distinct unit can be separately
corrected for ascertainment, without breaking up the
pedigree. Specifically,

Pr (FFA) � Pr (F ,F FA ,A )1 2 1 2

�k� e C C Pr (F) ,1 2

where

Pr (A d F ,F )1 1 2C � ,1 Pr (A )1

Pr (A d F ,F )2 1 2C � , (15)2 Pr (A )2

and k is defined by equation (14).
Proof. Write

Pr (A ,A ,F ,F )1 2 1 2Pr (F ,F FA ,A ) �1 2 1 2 Pr (A ,A )1 2

Pr (A ,A d F ,F )1 2 1 2� Pr (F ,F )1 2Pr (A ,A )1 2

( )Pr (A )Pr A1 2 Pr (A d F ,F )1 1 2�
Pr (A ,A ) Pr (A )1 2 1

Pr (A d F ,F ,A )2 1 2 1# Pr (F ,F )1 2Pr (A )2

and apply equations (12) and (14) to obtain the result.

Some Remarks

1. The proposition implies that the likelihood of F,
given A, is the unconditional likelihood of F not broken
but corrected by the factors C1 and C2, in formula (15),
corresponding to the ascertainments of the two obser-
vational units, and CAE.

2. The proposition is true regardless of the structure
of the smaller family units. Thus, singletons, pairs of
individuals, sibships, nuclear families, or more-extended
pedigrees can be considered as the smaller family units.
The proposition generalizes easily to more than two
smaller family units. Note that, if there are M units
within the pedigree, then

Pr (F ,F ,...,F FA ,A ,...,A )1 2 M 1 2 M

Pr (A ,A ,...,A d F ,F ,...,F )1 2 M 1 2 M�
Pr (A ,A ,...,A )1 2 M

# Pr (F ,F ,...,F )1 2 M

Pr (A ) Pr (A )... Pr (A ) Pr (A d F)1 2 M 1�
Pr (A ,A ,...,A ) Pr (A )1 2 M 1

Pr (A d F) Pr (A d F)2 M# ... Pr (F)
Pr (A ) Pr (A )2 M

�k� e C C ...C Pr (F) ,1 2 M

where

Pr(A A ) ,A )1 2 M
k � .{ }Pr(A )Pr(A ) ) Pr(A )1 2 M

3. The proposition has been derived for the joint prob-
ability of the vector of phenotypes, , given theF � (F ,F )1 2

ascertainment events, . Clearly, F can beA � (A ,A )1 2

augmented to include marker data, measurements on
covariates, proband status of each person, and other
random variables—such as number of affecteds, R �

; sibship sizes, ; and number of pro-(R ,R ) S � (S ,S )1 2 1 2

bands, —that are defined for each smallerT � (T ,T )1 2

family unit as an entity. George and Elston (1991) have
provided an overview of the classic segregation-analysis
model including S and T. My thesis that, in the derivation
of ascertainment corrections, we can think in terms of
smaller family units, still holds. If S and R are recorded
but F is not, the results still hold, with S and R in F’s
place; but these days a lot of attention is being given to
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Figure 2 F1, F2, and F3 are independently selected families. Per-
sons with the same Arabic letter are found to be identical after selec-
tion, leading to the combined pedigree.

variable age at onset, marker data, and other covariates
measured on individuals, and so it is rare to have S and
R recorded but to not have the actual phenotypes F of
individuals in the family. Consider the decomposition

Pr (F,S,R,T d A) � Pr (F d A)

# Pr (S,R d F,A)

# Pr (T d F,S,R,A) .

Given F and its structure (biological relationships), S and
R are determined, and therefore the middle factor is
unity. If T is a function of A and/or F,, or if F has been
augmented to include proband status, then the third fac-
tor is, similarly, unity.

The ascertainment corrections C1 and C2 simplify con-
siderably, if certain restrictions apply. In the following
sections, I discuss cases that are likely to be most useful
in practice.

Independently Selected Families Joining

Independent ascertainments can also occur if inde-
pendently selected families are found to be related in a
larger pedigree. Figure 2 illustrates this case. Two per-
sons, a and b, are identical, and the three families are
members of the larger pedigree. The theory shows that

can be specified for the combinedPr (F) � Pr (F ,F ,F )1 2 3

pedigree, not broken but adjusted for ascertainment by
multiplication by factors for each of the three indepen-
dently selected components.

But do we need to join them? If we do not join them,
then the inference based on the likelihood function per-
tains to the “sampled population” of similar nuclear-
family units. However, when they are combined, a fea-
ture of the underlying population, discovered after se-
lection, is taken into account, and the inference is, in
this sense, more pertinent to the underlying population.
Moreover, parameters of the dependence of the units can
be either incorporated, if known, or inferred, if un-
known. This may confer some advantage. As an ex-
ample, suppose that, in addition to disease status, figure
2 shows marker data. One can, of course, do linkage
analysis using the nuclear families. Using the combined
form now allows one to do linkage analysis while taking
phase into account. Similarly, in segregation analysis, the
mode of inheritance is easier to infer when the pedigrees
are intact than when they are broken into nuclear
families.

When families join into a larger pedigree, it is possible
for some units to completely overlap. Two possibilities
can be considered. One of these possibilities is to regard
such units as multiply ascertained and given an appro-

priate correction; Fisher’s (1934) p model was designed
with multiple ascertainment in mind. An alternative pos-
sibility is to use the theory discussed above, which means
that the C’s involved are multiplied. In both cases the
selection probability of individuals in the overlapping
units increases. The difference is in the degree of increase.
The merits of the two approaches will be left as an open
research question.

Dependent Ascertainments: Units with No Affecteds

One can speak of dependent ascertainments if the ped-
igree was not formed by the joining of independently
ascertained units. In particular, if the jth observational
unit does not contain probands, then it is in the pedigree
only because other units contain probands. I stress now
that the term “proband” is being used here in a broader
sense, to include even the pointers described by Lalouel
and Morton (1981). For a general formulation, one
needs to allow for probands outside the smaller family
unit. We can achieve this by defining the ascertainment
event Aj to include the ascertainment events of other
observational units. Let
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A � {at least one proband for1

unit 1 among members

of unit 1 and/or unit 2} ,

A � {at least one proband for2

unit 2 among members

of unit 1 and/or unit 2} .

Because we have extended the definition of the ascer-
tainment event for unit j to include the probands in other
units, the information that A1 provides about A2 is con-
tained in the very definition of A2, and vice versa,
so and ,Pr (A d A ) � v Pr (A ) Pr (A d A ) � v Pr (A )2 1 2 1 2 1

where v is a constant that does not depend on parameters
of interest. Usually we expect . Consequently, fromv � 1
equation (14),

Pr (A ,A ) Pr (A d A )1 2 2 1ke � �
Pr (A ) Pr (A ) Pr (A )1 2 2

Pr (A d A )1 2� � v .
Pr (A )1

Thus, the CAE is ignorable in likelihood analyses.
The ascertainment corrections for the separate units

can be specified according to formula (4); that is,

Pr (A d F F )1 1, 2C �1 Pr (A )1

1 �� [1 � p (Y )]� [1 � p (Y )]1 1s 1 2s1 2
s s1 2� ,

1 � � Pr (F ,F )� [1 � p (Y )]� [1 � p (Y )]1 2 1 1s 1 2s1 2
F ,F s s1 2 1 2

Pr (A d F ,F )2 1 2C �2 Pr (A )2

1 �� [1 � p (Y )]� [1 � p (Y )]2 1s 2 2s1 2
s s1 2� ,

1 � � Pr (F ,F )� [1 � p (Y )]� [1 � p (Y )]1 2 2 1s 2 2s1 2
F ,F s s1 2 1 2

(16)

where the products with respect to s2 are for distinct
persons in smaller family unit 2 who are not also in
smaller family unit 1. In the following formulas, the
summations corresponding to the products over s2 in
formula (16) are also only over the corresponding dis-
tinct persons. To avoid confusion, I will denote the af-
fected quantities by the superscript “*” (e.g., “ ”).∗a2

First-order Taylor-series approximations of the nu-
merator and denominator yields an expression analo-
gous to ascertainment correction (7),

2� �p (Y )m usu
u�1 suC � , m � 1,2 . (17)2 1m � � Pr (Y )p (Y )us m usu u

u�1 Y �0usu

To be explicit, substitute, in formula (17),

p (Y ) � p if Y � 1 ,1 1s 11 1s1 1

� 0 otherwise ;

p (Y ) � p if Y � 1 ,1 2s 12 2s2 2

� 0 otherwise ;

p (Y ) � p if Y � 1 ,2 1s 21 1s1 1

� 0 otherwise ;

p (Y ) � p if Y � 1 ,2 2s 22 2s2 2

� 0 otherwise ;

n1

a � Y ,�1 1s1
s �11

∗n2

∗a � Y ;�2 2s2
s �12

n11—p � Pr (Y � 1) ,�1 1s1n s �111

∗n21—∗p � Pr (Y � 1) .�2 2s∗ 2n s �122

We find that

∗a � a p /p1 2 12 11C � ,— —1 ∗ ∗n p � n p p /p1 1 2 2 12 11

∗a p /p � a1 21 22 2C � .— —2 ∗ ∗n p p /p � n p1 1 21 22 2 2

These formulas generalize, in an obvious manner, to the
case of a pedigree containing more than two units. Thus,
for a pedigree containing M units, the ascertainment
corrections are

∗a � � a p /pm u mu mm
u(mC � , m � 1,2,...,M . (18)— —m ∗ ∗n p � � n p p /pm m u u mu mm
u(m

In these formulas, the unknown quantity is the ratio of
the p’s. I will briefly discuss two possibilities.

1. Uniform-proband-status ascertainment correction:
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Suppose that a member of a different unit, if affected
with the disease, has the same chance as members of the
unit under consideration to be a proband for that unit;
then all the p’s are equal, and ascertainment correction
(18) simplifies to

n� Yi
i�1C � C � ... � C � , (19)n1 2 M � Pr(Y � 1)i

i�1

where the subscript i indexes members of the whole ped-
igree. Therefore, the overall ascertainment correction is
formula (19) raised to the power M. The equal-proband-
status scenario is not unreasonable for small three-gen-
erational pedigrees.

2. Inverse law of ascertainment corrections: For large
pedigrees, the degree of biological relationships plays a
key role in the selection, so it is reasonable to construct
ascertainment-probability functions on the basis of that
fact. In particular, functions in which pmu decreases with
the biological relationships between members of smaller
family units m and u can be considered. Usually first-
degree and, rarely, second-degree relations are important
for ascertainment. Thus, pmu can be set to zero, for re-
lationships more distant than second degree.

To be precise, let nmu be the degree of the closest bi-
ological relationship between members of the smaller
family unit m and members of smaller family unit u,
where if . Furthermore, let be an � 0, m � u q 1 0mu

known or unknown number that can depend on nmu.
Then, I suggest, as an illustration, the following inverse
law of ascertainment probabilities, with degree of bio-
logical relationship:

p
p � for n X 2,and 0 for n 1 2 .mu mu muq(1 � n )mu

Then ascertainment correction (18) becomes

∗au
qa � �m (1�n )mu

u(mC � , m � 1,2,...,M . (20)m — — 1∗ ∗
qn p � � n pm m u u (1�n )mu

u(m

In this formulation, q can be chosen judiciously. Some
choices that can be readily interpreted are ,q � 1 q �
, and .2 q � nmu

The multiplex-ascertainment-correction formula (11)
can be extended in an obvious manner. For example, in
the equal-proband-status scenario, the duplex ascertain-
ment correction has the same form as formula (9), except
that the summations will span the whole pedigree.

Choice of Sampling Unit and Method of
Ascertainment Correction

As I have already pointed out, the basis of statistical
inference is the presumption that the population and the
sample are both characterized by the same units; the
sample is simply a selection of units from the defined
population. The type of units, how they are drawn into
the sample, and how the resulting data are analyzed, are
critical components of study design that need to be care-
fully decided before the study is begun. After the sample
has been drawn, it is prudent to inspect the data to see
whether the units and their characterization indeed con-
form to the design specifications and to make adjust-
ments, if necessary, in the data analysis. There was no
problem about the unit in the classic works that con-
sidered sibships and nuclear families. Decisions about
the sample unit and its characterization, including the
fact that it should contain at least one proband, were
made before the units were actually drawn. There was
no ambiguity about the sampled population. But this is
obviously not the case for a pedigree. However, a ped-
igree, no matter how complex, is simply a set of distinct
sibships connected by common parents, and so it is nat-
ural to characterize both the sampled population and
the target population in terms of sibships. Moreover,
because every full sibship is determined by the biological
mother and father, one can, alternatively, consider nu-
clear-family units. The units will then partially overlap,
but my theory allows for that. Hence I suggest that the
classic units for family studies, which are sibships and
nuclear families, be used for pedigrees as well, without
breaking them into nuclear families. Formally, I state the
following:

PROPOSITION III. If no pedigree in the sample contains
a nuclear family with no affecteds, then ascertainment
corrections can be based on one of the following: selec-
tion through an affected child; selection through an af-
fected parent; or selection through an affected parent-
child pair, without breaking the pedigree into nuclear
families.

To facilitate the application of proposition III, I make
seven recommendations that leave no ambiguities about
either the sampling unit or the applicable model-free
method of ascertainment correction.

1. If every sibship contains one (two) or more affect-
eds, consider the sibship as the unit and use single (du-
plex) ascertainment correction.

2. If every spouse pair has one or two affecteds, con-
sider using spouse pairs as the units and use single as-
certainment correction.

3. If every nuclear family has one or more affecteds,
consider nuclear families as the units and use single as-
certainment correction.

4. If every nuclear family has an affected parent-off-
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Figure 3 Extending a pedigree upward. Sibships U1, U2, and U3

are the sampling units. The pedigree is selected because U1 contains
at least one proband and because individuals II-1 and II-4 have a
phenotype that causes ascertainment of their sibships—U3 and U2,
respectively.

spring pair, consider nuclear families as the units and
use duplex ascertainment involving distinct parent-off-
spring pairs, as in equation (10).

5. If a pedigree contains a nuclear family with no
affected persons, consider the nuclear family as the unit
or, if more convenient, the sibship and use formula (19)
or formula (20).

6. If the sample consists of several small pedigrees each
with several affecteds, and if the actual ascertainment
scheme is not well defined, consider each pedigree as a
whole unit and use the uniform-proband-status ascer-
tainment correction, formula (19).

7. If the pedigree was selected because it contains xk
probands regardless of size and structure, then use the
whole pedigree as the unit and consider the k-plex as-
certainment correction. Even so, if smaller units such as
sibships or nuclear families are well characterized, then
a correction based on that may be better, since the in-
ference will pertain to a well-defined sampled popu-
lation.
The term “proband” is not overtly used (except in rec-
ommendations 6 and 7), so that the applicable model-
free method in the “Generalized Single and Multiplex
Ascertainments” section (above) will be obvious.

In some applications, two or more of the above-listed
recommendations may apply. The cardinal rule should
be the following: stick to the sampling unit determined
before the data were collected, unless, for some reason,
a redefinition is required.

Is it sufficient to condition on the smaller family units
containing at least one proband or, for that matter, two
or more probands? There are cases of known sampling
rules that may make it necessary to condition on the
phenotypes of certain members of the pedigree, in ad-
dition to conditioning on some smaller family units con-
taining at least one proband. Let us return to figure 3.
Suppose, now, that the pedigree is drawn because U1

contains at least one proband and person II-3 has a
phenotype that causes ascertainment. The ascertainment
event A3 now includes the fact that person II-3 has a
phenotype that causes ascertainment, and we should
therefore also condition on the probability of the phe-
notype of II-3. The sampled population is now a proper
subset of the usual one. The analyst should give some
thought to what the sampled population might actually
be. If all the pedigrees are of the same form as above,
and if, indeed, all II-3 persons have the phenotype that
causes ascertainment, then the sampled population is
unambiguously characterized by the conditioning that
we have indicated. But, if, for some reason, some of the
pedigrees do not have unit 3, and if we wish to analyze
all of them, then a less restrictive sampled population is
needed. Sometimes, this can be achieved by ignoring the
actual units used for the sampling and choosing instead
a unit that is more convenient for the purpose of anal-

ysis. For this purpose, using the sibship or nuclear family
as the smaller family unit is more in keeping with the
classic work and has a natural appeal.

Further Discussion of CAE

We now return to k, the CAE defined in formula (14).
There are two scenarios that make CAE ignorable in
likelihood-based analysis of pedigrees with two or more
units: the first is that in which independent ascertain-
ments of the separate units join to form the pedigree;
the second is that in which k does not depend on pa-
rameters of interest. These assumptions may, in practice,
be difficult to justify for all pedigrees under study. How-
ever, they can be made in the same spirit as the inde-
pendence of probands in the classic formulation of as-
certainment corrections. Even so, it will be helpful to
have some sense about circumstances under which k can
be ignored. In family studies, we are concerned with
diseases that aggregate in the selected families, and the
sampling process itself is supposed to ensure this. There-
fore, the units of interest are likely to be more frequent
in pedigrees identified through probands than they are
in pedigrees obtained by random selection. If that is the
case, then we speak of aggregation of ascertainment
events in the pedigrees. I shall construct a model for the
joint probability, JA, of ascertainment events A1, A2, ),
AM, where if unit m is ascertained and whereA � 1m

otherwise, that appropriately allows clusteringA � 0m

of these events in the pedigrees.
The disposition models of Bonney (1992, 1995,

1998), for correlated binary outcomes, can be readily
adapted for this purpose. Let dAm denote the disposition
of unit m to ascertainment; it can depend on character-
istics or covariates of unit m. Furthermore, let dA be the
baseline disposition to ascertainment when all covariates
take a common value. If there is no aggregation of as-
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certainment events in the pedigree, then we can write
(the population rate, so to speak). Let the mea-d � mA A

sure of the aggregation of the ascertained events in the
pedigrees under study be defined by the ratio

d with no aggregation of ascertained unitsA
a �A

d with aggregation of ascertained unitsA

mA� .
dA

Then a joint probability model connecting these quan-
tities is, from Bonney (1995, and and unpublished data),

J � Pr (A ,A ,...,A )A 1 2 M

M M

A 1�Am m� (1 � a ) � (1 � A ) � a � d (1 � d ) .A m A A Am m
m�1 m�1

In this model there is positive aggregation if m XA

, no aggregation if , and negative aggre-a ! 1 a � 1A A

gation if . Under positive aggregation, the jointa 1 1A

distribution JA lies in the interval 0–1. Negative aggre-
gation is also permitted, but, for JA to be appropriately
bounded, the size of negative aggregation is restricted
by cluster size (M, in this case) in the same way that the
negative intraclass correlation coefficient is restricted to
the interval . Moreover, aA is related to[�1/(M � 1),0]
the population rate, mA, of the event of interest and to
their interunit baseline correlation, rA, by the formula

�1

rA
a � 1 � .A [ ]m /(1 � m )A A

Our CAE, k, can be quickly calculated. We find that

Pr (A � 1,A � 1,...,A � 1)1 2 M
k � loge [ ]Pr (A � 1) Pr (A � 1)... Pr (A � 1)1 2 M

a d d ...dA A A A1 2 M� loge { }(a d )(a d )...(a d )A A A A A A1 2 M

� �(M � 1) logaA

rA� (M � 1) log 1 � .e [ ]m /(1 � m )A A

So it is aA, the measure of aggregation of ascertainment
events in the pedigree relative to that in the general pop-
ulation, that is important for k. The actual disposition
of the units to ascertainment, the d’s, do not count. It
is now clear that, if aA has no connection with the actual
disease phenotypes as measured on the pedigree, then
CAE can be ignored in likelihood calculations. But, as

already noted, in family studies, we are concerned with
diseases that aggregate in the selected families, and we
often employ a selection process that guarantees this. A
connection that is therefore relevant in family studies
can be stated as follows.

PROPOSITION IV. If the clustering of ascertainment of
units in the pedigree, aA, is equal to the clustering of the
disease in the pedigree, then

CAE � �(M � 1) log ae A

r0� (M � 1) log 1 � ,e [ ]m /(1 � m )0 0

where the subscript zero now refers to the corresponding
quantity for the disease phenotype itself.

Note that, even if the proposition holds but r0 is equal
to the population odds for the disease, , thenm /(1 � m )0 0

CAE does not depend on parameters of interest. For
practical purposes, we observe that, under complete as-
certainment or a so-called population-based(p � 1)
family study, every affected person is a proband, and so
the units selected into the pedigree are only those that
have the disease or are otherwise needed to fill gaps in
the pedigree. Under those sampling conditions, the prop-
osition strongly applies, and so some information can
be lost by ignoring the CAE, if the phenotypic correla-
tion is substantially different from the population odds
of the disease. In applications in which p is small, the
aggregation of ascertainment events in the pedigrees un-
der study may not be as strong, and so it may be less
penalizing to ignore the CAE; but this needs further
study.

Concluding Remarks

Our systematic study of ascertainment corrections for
pedigrees shows the following.

1. Smaller units suitably chosen, at least for the pur-
pose of statistical analysis, can be separately corrected
for ascertainment without breaking up the pedigrees and
without the introduction of the pointers of Lalouel and
Morton. This should encourage, in the study-design
phase of a project, a consideration of smaller and well-
characterized sampling units, even if large pedigrees are
contemplated.

2. The appropriate correction for single ascertainment
is the reciprocal of the sum of the marginal probabilities
of all relevant persons in the unit as if they were affected.
Extensions of the result to multiplex ascertainment are
indicated. The k-plex ascertainment correction is the re-
ciprocal of the sum of the joint probabilities of all dis-
tinct sets of k persons in the unit as if they were all
affected.

3. If pedigrees join, then our formulas still apply. If,
by pedigrees joining, some units completely overlap,
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then those units can be regarded as multiply ascertained,
or one can simply multiply the corresponding C’s.
Several new questions remain. Here we note just a few.

First, can we use CAE, the measure of interunit cor-
relation of ascertainment events, as a way to decide on
the optimum smaller family unit for the purpose of as-
certainment correction? It seems intuitive that, if the
units are chosen so that the biological phenomenon un-
der study is adequately described for each unit, then the
effect of CAE, if not zero, would be minimal, on the
parameters of interest. In this regard, a nuclear family
as a unit may be sufficient for segregation analysis,
whereas, for linkage analysis taking into account phase,
three generations may be required. Proposition II and
the further discussion of the correlation of ascertainment
events can be used in numerical assessments of the effects
of assuming that there is independent ascertainment of
the units.

Another question that can be investigated further con-
cerns pedigrees joining. It may happen that some units
completely overlap. The merits of multiple-ascertain-
ment procedures can be studied in comparison with sim-
ple multiplication of the associated C’s.

The main thesis of the work reported here is that, for
the purpose of correcting for ascertainment, we can
think in terms of the smaller family units that make up
the pedigree, without breaking it. In this regard, a ped-
igree is simply a set of distinct sibships connected by
common parents, and so it is natural to characterize both
the sampled and the target population in terms of sib-
ships. Alternatively, one can consider nuclear family
units (two-parent sets each with the biological children).
The units will then partially overlap, but the theory al-
lows for that. Hence, the classic thinking about ascer-
tainment corrections—that is, in terms of either selection
through an affected child or through an affected parent
—can be extended to pedigrees as well, without breaking
them. This is the thrust of our proposition III. Moreover,
with the formulas presented here for single and k-plex
ascertainments, we need not use Fisher’s p. Thus, ad-
vocates of the so-called robust ascertainment corrections
should find this work useful. In particular, the appro-
priate correction for single ascertainment in our prop-
osition I, the generalizations to k-plex ascertainment,
and the six recommendations following our proposition
III can be evaluated in the development of guidelines.

Furthermore, the problem of pedigree structure is not
as entirely hopeless as Vieland and Hodge (1995) por-
tray it to be, for, by thinking in terms of sibships or
nuclear families, we can extend the classic approach of
Bailey (1951) and Morton (1959), which includes con-
sideration of sibship size distribution, to pedigrees as
well, although the modeling should now incorporate in-
tergenerational correlations in sibship sizes. Also, to say
that inference is conditional on pedigree structure (of

arbitrary size) is then not meaningless, for then we are
really speaking of conditioning on sibship sizes.

However, there is still a question about whether we
should always think in terms of smaller units, for the
purpose of ascertainment correction. In the foregoing
development for dependent ascertainments, it was noted
that the equal proband status for the selected subunits
is not unreasonable for small—say, three-genera-
tional—pedigrees. And so, an alternative in such cases
is not to think in terms of smaller units at all but to treat
the intact pedigree as one unit and to apply the formulas
for k-plex ascertainment. This requires the sixth or sev-
enth recommendation following proposition III. In con-
clusion, thinking in terms of smaller family units, as we
have done in this article, opens the question of ascer-
tainment corrections, for further research.
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